

$\underline{3}$
17,18-dihydro-3

a
Desorption-chemical ionization MS^{13} revealed molecular ions and the presence of chlorine, which was confirmed by combustion analysis. The 17,18 -dihydro relationship of $\mathbf{1}$ and $\mathbf{2}$ and of $\mathbf{3}$ and 4 is evident from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data and from their formulas, each pair differing by two mass units. The structure of $1, \mathrm{C}_{27}{ }^{-}$ $\mathrm{H}_{37} \mathrm{ClO}_{10}$, was deduced as follows: Three acetates ($\delta 171.3,170.5$, 170.4, 2.11, 2.08, 2.00, all singlets; $1740 \mathrm{~cm}^{-1}$) and one methyl ester ($\delta 173.8,3.65$) account for eight oxygens and four of nine unsaturations. An α, β-enone ($228 \mathrm{~nm}, \epsilon 7900 ; \delta 196.0 \mathrm{~s}, 136.1$ $\mathrm{s}, 158.1 \mathrm{~d}, 7.26 \mathrm{~s}$) and a 3° hydroxyl ($3500 \mathrm{~cm}^{-1} ; \delta 77.2 \mathrm{~s}$) complete the oxygen functions and leave three unsaturations. Two of these are Z olefins ($\delta 134.6,132.9,126.0,121.5$, all doublets; $\delta 5.30$, $5.61, J=10.8 \mathrm{~Hz}, 5.24,5.41 J=10.6 \mathrm{~Hz}$) and the last must be a ring for lack of additional low-field NMR signals.

Extensive decoupling experiments at 500 MHz fully documented all protons from $\mathrm{C}-2$ to $\mathrm{C}-8$ and $\mathrm{C}-13$ to $\mathrm{C}-20$ and hence both side chains. A 3° hydroxyl at $\mathrm{C}-12$ was supported by the nonequivalence of the $\mathrm{C}-13^{1} \mathrm{H}$ NMR signals ($\delta 2.53,2.45$) and their only coupling to $\mathrm{H}-14(\delta 5.30, J=7.0 \mathrm{~Hz}$), thereby unequivocally placing chlorine at $\mathrm{C}-10$.

Punaglandin 1 (1) loses HOAc when treated with pyridine ${ }^{14}$ affording a $3: 1$ mixture of $(Z)-7,8$-punaglandin $3(5)^{12}$ and 3 . The predominant Z isomer has an $\mathrm{H}_{6,7}$ coupling constant of 7.7 Hz vs. 9.1 Hz for the E isomer. This assignment is further confirmed by comparing the chemical shifts of $\mathrm{H}-6$ (6.02 ppm) and $\mathrm{H}-7$ (6.35 $\mathrm{ppm})$ in the E isomer 3 with those of $\mathrm{H}-6(6.32 \mathrm{ppm})$ and $\mathrm{H}-7$ (6.08 ppm) in the Z isomer 5 . The downfield shift of H-6 and the upfield shift of $\mathrm{H}-7$ when going from E to Z is caused by the anisotropy of the C-9 carbonyl and is analogous to observations in the claviridenone series. ${ }^{15}$ Under the same reaction conditions, $\mathbf{2}$ is transformed into (Z)-7,8-punaglandin $4(6)^{12}$ and its E isomer, also in a ratio of $3: 1$. These reactions show that all four punaglandins belong to the same stereochemical series. The relative

[^0]stereochemistry of the five centers was deduced as follows. The trans relationship of the two side chains was proven by irradiating $\mathrm{H}_{2}-13$ at $\sim 2.5 \mathrm{ppm}$ and observing a strong NOE of the $\mathrm{H}-8$ signal at 2.75 ppm . The three acetates at $\mathrm{C}-5, \mathrm{C}-6$, and $\mathrm{C}-7$ must have all-threo configuration since $J_{5.6}=J_{6.7}=5.3 \mathrm{~Hz} .^{16}$ Finally, H-7 must be gauche to $\mathrm{H}-8(J=4.2 \mathrm{~Hz})$, as the less favorable Z isomer can only predominate, as it does in the HOAc elimination, if $\mathrm{H}-8$ and $\mathrm{AcO}-7$ are anti to each other, as in a. If one assumes that the punaglandins have the same stereochemistry as other marine eicosanoids, ${ }^{17,18}$ our structures also represent the correct absolute stereochemistry.

Acknowledgment. We thank Dr. Walter P. Niemczura for carrying out many of the NMR experiments, Jill Baker for technical assistance, the Southern California and Colorado State Regional NMR facilities for the $500-\mathrm{MHz}{ }^{1} \mathrm{H}$ and $125-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra, and the National Science Foundation and the University of Hawaii Sea Grant College Program under Institutional Grant NA81AA-D-0070 from NOAA, Office of Sea Grant, U.S. Department of Commerce, for financial support.

Supplementary Material Available: Full physical data and ${ }^{1} \mathrm{H}$ NMR spectra of compounds 1 and 6 (10 pages). Ordering information is given on any current masthead page.
(16) Kishi, Y. Curr. Trends Org. Synth., Proc. Int. Conf., 4th 1983, 1984, 115-130.
(17) Kobayshi, M.; Yasuzawa, T.; Yoshihara, M.; Son, B. W.; Kyogoku, Y., Kitagawa, I. Chem. Pharm. Buil. 1983, 31, 1440-1443.
(18) Kikuchi, H.; Tsukitani, Y.; Iguchi, K., Yamada, Y. Tetrahedron Lett. 1983, 24, 1549-1552.

Nucleophilic Addition of Azide Ion to Benzene Oxide: A Reinvestigation

Michael J. McManus and Glenn A. Berchtold*

Department of Chemistry
Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Donald M. Jerina*
Laboratory of Bioorganic Chemistry
National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases National Institutes of Health Bethesda, Maryland 20205
Received September 17, 1984
Revised Manuscript Received March 12, 1985
The reaction of benzene oxide (1) with sodium azide in $\mathrm{H}_{2} \mathrm{O}$ at room temperature affords trans-6-azidocyclohexa-2,4-dien-1-ol (2) as the major product. ${ }^{1}$ The $220-\mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ indicated the presence of a minor amount of 4 -azidocyclo-hexa-2,5-dien-1-ol (3) for which stereochemistry was not assigned. ${ }^{2}$ The reaction of 1-3,6-2 H_{2} with $\mathrm{N}_{3}{ }^{-}$gave the 1,2-azido alcohol as a mixture of deuterium-labeled isomers 2-2,5- ${ }^{2} \mathrm{H}_{2}$ and $2-3,6-{ }^{2} \mathrm{H}_{2}$ in addition to $3-2,5-{ }^{2} \mathrm{H}_{2}$, and it was concluded that both trans-1,2 and trans-1,6 addition of $\mathrm{N}_{3}{ }^{-}$to $\mathbf{1}$ occurs to form $2 .{ }^{\text {. }}$
Recent observations of facile (room temperature) [3,3]-sigmatropic rearrangements (Claisen rearrangements) involving

[^1]Scheme I

\% from
$1-3,6^{-2} \mathrm{H}^{48}$
from 1 42

41

47
cyclohexadienyl systems ${ }^{3}$ have led us to question whether 1,4 or 1,6 addition of $\mathrm{N}_{3}{ }^{-}$to 1 does, in fact, occur. An alternative explanation for the results observed with $1-3,6-{ }^{2} \mathrm{H}_{2}$ would be to assume only trans-1,2 addition of $\mathrm{N}_{3}{ }^{-}$to afford $2-2,5-{ }^{2} \mathrm{H}_{2}$ which undergoes rapid thermal equilibration with $3-2,5-{ }^{2} \mathrm{H}_{2}$ and $2-3,6-{ }^{2} \mathrm{H}_{2}$ by consecutive [3,3]-sigmatropic rearrangements (or 1,3 shifts). The rearrangement of allyl azides is well documented, ${ }^{4}$ including examples that occur at $25^{\circ} \mathrm{C}$. ${ }^{4, \cdot b}$

Reaction of $1-3,6-{ }^{-2} \mathrm{H}_{2}$ with NaN_{3} in $\mathrm{H}_{2} \mathrm{O}$ at room temperature followed by workup and chromatography (silica gel plate, $2: 1$ hexane/ethyl acetate, $R_{f} 0.32$) gave $2-2,5-{ }^{2} \mathrm{H}_{2}, 3-2,5-{ }^{2} \mathrm{H}_{2},{ }^{5}$ and $2-3,6-{ }^{2} \mathrm{H}_{2}$ in the relative amounts indicated in Scheme I. ${ }^{6}$ The ratio did not change on standing at room temperature. Attempts to monitor the course of the reaction in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ were not successful due to interference by ${ }^{2} \mathrm{HOH}$ absorption. Consequently, we decided to develop a reaction sequence that would provide $2-3,6-{ }^{2} \mathrm{H}_{2}$ as the sole isomeric product.

Bromide 5 was prepared from 4^{1} by the same procedure described for the undeuterated material. ${ }^{7.8}$ Displacement of bromide 5 with $\mathrm{N}_{3}^{-}(1 \mathrm{~h}$, room temperature) afforded 6 (83\%) which reacted with PhSeLi in THF (1 h , room temperature) to provide $7(53 \%)$. Oxidation of 7 with ($n-\mathrm{Bu})_{4} \mathrm{~N}^{+} \mathrm{IO}_{4}^{-}$in MeOH gave the selenoxide which underwent selenoxide elimination at room temperature (6 h). Workup and chromatography (as above) gave 2-2,5- ${ }^{2} \mathrm{H}_{2}, 3-2,5-{ }^{2} \mathrm{H}_{2}$, and $2-3,6-{ }^{2} \mathrm{H}_{2}$ in the relative amounts indicated in Scheme I. The ratio did not change on standing at room temperature. These results establish the rapid thermal equilibrium among the three isomeric products at room temperature. ${ }^{9}$ Within experimental error the product ratios from addition of N_{3}^{-}to $1-3,6-{ }^{2} \mathrm{H}_{2}$ and from selenoxide elimination from 7 are identical, and, as expected, 2-2,5- ${ }^{2} \mathrm{H}_{2}$ and $2-3,6-{ }^{2} \mathrm{H}_{2}$ are present in equal amounts at equilibrium.

[^2]Furthermore, heating of azide $8,{ }^{10}$ at $120^{\circ} \mathrm{C}$ in dimethylformamide for 10 h gave an equilibrium mixture of $8(72 \%)$ and $9(28 \%)$. The two isomers were easily separated by flash chro-

matography ${ }^{11}$ on silica gel (4:1 hexane/ethyl acetate). Selenoxide elimination from 9 at room temperature (1.5 h) gave the same equilibrium mixture of $2(88 \%)$ and $3(12 \%)$ as that obtained from addition of $\mathrm{N}_{3}{ }^{-}$to $\mathbf{1}(87 \% 2$ and $13 \% \mathbf{3}) .{ }^{12}$

Due to the rapid thermal equilibrium among $2-2,5{ }^{2} \mathrm{H}_{2}$, 3-$2,5-{ }^{2} \mathrm{H}_{2}$, and $2-3,6-{ }^{2} \mathrm{H}_{2}$, it is not possible to address the question of 1,2 vs. 1,4 vs. 1,6 addition of $\mathrm{N}_{3}{ }^{-}$to $\mathbf{1}$ on the basis of available data. Since PhS^{-}and MeO^{-}undergo nucleophilic addition to 1 solely by 1,2 addition, ${ }^{1}$ it is reasonable to assume that addition of $\mathrm{N}_{3}{ }^{-}$to 1 occurs only by the 1,2 addition.

Acknowledgment. We are grateful to the National Institutes of Health, Grant GM 26388, for financial support.

Supplementary Material Available: Spectra and physical data for 5-9 (2 pages). Ordering information is given on any current masthead page.
(10) Azide 8 was prepared from unlabeled starting material by the same procedure for preparation of 7 .
(11) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
(12) No line broadening or coalescence of signals was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $2-2,5-^{2} H_{2}, 2-3,6-{ }^{2} H_{2}$, and $3-2,5-{ }^{2} H_{2}$ in $\mathrm{C}^{2} \mathrm{HCl}_{2} \mathrm{C}^{2} \mathrm{HCl}_{2}$ at temperatures up to $105^{\circ} \mathrm{C}$. Decomposition to HN_{3} and phenol prevented investigation at higher temperatures.

Crystal Structure of meso-Tetratolylporphyrin: Implications for the Solid-State ${ }^{15} \mathbf{N}$ CPMAS NMR

Raymond J. Butcher,*la Geoffrey B. Jameson,* ${ }^{* b}$ and Carlyle B. Storm ${ }^{*+1 a}$

Department of Chemistry, Howard University
Washington, DC 20059
Department of Chemistry, Georgetown University
Washington, DC 20057
Received November 20, 1984
There has been considerable interest in the $\mathrm{N}-\mathrm{H}$ tautomerism of free-base porphyrins and chlorins, which has been interpreted in terms of Scheme I. ${ }^{2-14}$ The recent observation of tautomerism

[^3]
[^0]: (13) We thank Professor K. Nakanishi (Columbia) for these determinations.
 (14) 3 days, room temperature. Product isolated by addition of $\mathrm{C}_{6} \mathrm{H}_{6}$, distillation, freeze drying, and chromatography over a SiO_{2}-filled pipet, eluted with petroleum ether/EtOAc, 8:2.
 (15) Kitagawa, I.; Kobayashi, M.; Yasuzawa, T.; Son, B. W.; Yoshihara, M.; Kyogoku, Y. Tetrahedron, in press.

[^1]: (1) Jeffrey, A. M.; Yeh, H. J. C.; Jerina, D. M.; DeMarinis, R. M.; Foster, C. H.; Piccolo, D. E.; Berchtold, G. A. J. Am. Chem. Soc. 1974, 96, 6929-6937.
 (2) Dienol 3 shows absorptions at $\delta 6.32$ and $6.26\left(\mathrm{H}_{2}, \mathrm{H}_{6}\right.$ or $\left.\mathrm{H}_{3}, \mathrm{H}_{5}\right), 4.52$ $\left(\mathrm{H}_{1}\right)$, and $4.04\left(\mathrm{H}_{4}\right)$. The absorption reported previously at 4.78 ppm apparently was due to the hydroxyl proton; the absorption for H_{4} at 4.04 ppm was obscured by the absorption for H_{6} of $\mathbf{2}$ at 4.09 ppm and the absorption of $\mathrm{H}_{2}, \mathrm{H}_{6}$ or $\mathrm{H}_{3}, \mathrm{H}_{5}$ was obscured by the absorption for H_{3} of 2 at 6.04 ppm in the $220-\mathrm{MHz}$ spectrum.

[^2]: (3) Hoare, J. H.; Policastro, P. P.; Berchtold, G. A. J. Am. Chem. Soc. 1983, 105, 6264-6267.
 (4) (a) Gagneux, A.; Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1960, 82, 5956-5957. (b) VanderWerf, C. A.; Heasley, V. L. J. Org. Chem. 1966, 31, 3534-3537. (c) Laurent, A.; Mison, P.; Nafti, A. Synthesis 1983, 685-700. (d) Ferrier, R. J.; Vethaviyaser, N. J. Chem. Soc. C 1971, 1907-1913. (e) Cleophax, J.; Olesker, A.: Rolland, A.; Gero, S. D. Tetrahedron 1977, 33, 1303-1308.
 (5) The stereochemistry of $3-2,5-^{2} \mathrm{H}_{2}$ is assumed on the basis of its formation from $2-2,5-{ }^{2} \mathrm{H}_{2}$ and $2-3,6{ }^{-2} \mathrm{H}_{2}$ by thermal equilibration.
 (6) Product ratios were determined by integration of the $250-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}. Chemical shift data for 3 are given in ref 2 ; chemical shift data for 2 are given in ref 1 .
 (7) Kühlmeyer, R.; Keller, R.; Schwesinger, R.; Netscher, T.; Fritz, H.; Prinzbach, H. Chem. Ber. 1984, 117, 1765-1800.
 (8) The sequence $4 \rightarrow 7$ and subsequent selenoxide elimination was first developed with undeuterated material.
 (9) The possibility of a $[1,5]$ shift of the azido group cannot be eliminated.

[^3]: ${ }^{\dagger}$ Current address: M-1, MS C920, Los Alamos National Laboratory, Los Alamos, NM 87545.
 (1) (a) Howard University. (b) Georgetown University.
 (2) Storm, C. B.; Teklu, Y. J. Am. Chem. Soc. 1972, 94, 1745-1747.
 (3) Storm, C. B.; Teklu, Y.; Sokoloski, E. A. Ann. N. Y. Acad. Sci. 1973, 206, 631-640.
 (4) Burgner, R. P.; Ponte Goncalves, A. M. J. Chem. Phys. 1974, 60 , 2942-2943.
 (5) Abraham, R. J.; Hawkes, G. E.; Smith, K. M. Tetrahedron Lett. 1974, 1483-1486.
 (6) Eaton, S. S.; Eaton, G. R. J. Am. Chem. Soc. 1977, 99, 1601-1604.
 (7) Irving, C. S.; Lapidot, A. J. Chem. Soc., Chem. Commun. 1977, 184-186.
 (8) Kawano, K.; Ozaki, Y.; Kyogoku, Y. J. Chem. Soc., Chem. Commun. 1977, 226-227.
 (9) Gust, D.; Roberts, J. D. J. Am. Chem. Soc. 1977, 99, 3637-3640.
 (10) Yeh, H. J. C.; Sato, M.; Morishima, I. J. Magn. Reson. 1977, 26, 365-368.
 (11) Grishin, Y. K.; Subbotin, O. A.; Ustynyuk, Y. A.; Kopranenov, E. D.; Goncharova, L. S.; Lukyanets, E. D. Zh. Strukt. Khim. 1979, 20, 352-354.
 (12) Stilbs, P.; Mosley, M. E. J. Chem. Soc., Faraday Trans 2 1980, 76, 729-731.
 (13) (a) Sarai, A. Chem. Phys. Lett. 1981, 83, 80-54. (b) Sarai, A. J. Chem. Phys. 1982, 76, 5554-5563. (c) Sarai, A. J. Chem. Phys. 1984, 80, 5341-5343.

